求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 
 
Pandas 教程
1. Pandas 是什么
2.Pandas库下载和安装
3.Pandas Series入门教程
4.Pandas DataFrame入门教程
5.Pandas Panel三维数据结构
6.Python Pandas描述性统计
7.Pandas使用自定义函数
8.Pandas reindex重置索引
9.Pandas iteration遍历
10.Pandas sorting排序
11.Pandas去重函数:drop_duplicates()
12.Python Pandas处理字符串(方法详解)
13.Pandas设置数据显示格式
14.Pandas loc/iloc用法详解
15.Python Pandas统计函数
16.Python Pandas窗口函数
17.Python Pandas聚合函数
18.Python Pandas缺失值处理
19.Pandas groupby分组操作详解
20.Pandas merge合并操作
21.Pandas concat连接操作
22.Python Pandas时间序列
23.Pandas日期时间格式化
24.Padans Timedelta时间差
25.Pandas随机选择样本
26.Pandas数据重采样
27.Python Pandas分类对象
28.Python Pandas绘图
29.Python Pandas读取文件
30.Pandas csv读写文件
31.Pandas Excel读写操作
32.Pandas index操作索引
33.Pandas分层索引入门教程
34.Pandas执行SQL操作
35.Pandas和NumPy的比较
36.Pandas使用的注意事项
 

 
Pandas是什么
150 次浏览
1次  

Pandas 是一个开源的第三方 Python 库,从 Numpy 和 Matplotlib 的基础上构建而来,享有数据分析“三剑客之一”的盛名(NumPy、Matplotlib、Pandas)。Pandas 已经成为 Python 数据分析的必备高级工具,它的目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。

pandas教程

图1:Pandas Logo

Pandas 这个名字来源于面板数据(Panel Data)与数据分析(data analysis)这两个名词的组合。在经济学中,Panel Data 是一个关于多维数据集的术语。Pandas 最初被应用于金融量化交易领域,现在它的应用领域更加广泛,涵盖了农业、工业、交通等许多行业。

Pandas 最初由 Wes McKinney(韦斯·麦金尼)于 2008 年开发,并于 2009 年实现开源。目前,Pandas 由 PyData 团队进行日常的开发和维护工作。在 2020 年 12 月,PyData 团队公布了最新的 Pandas 1.20 版本 。

在 Pandas 没有出现之前,Python 在数据分析任务中主要承担着数据采集和数据预处理的工作,但是这对数据分析的支持十分有限,并不能突出 Python 简单、易上手的特点。Pandas 的出现使得 Python 做数据分析的能力得到了大幅度提升,它主要实现了数据分析的五个重要环节:

  • 加载数据
  • 整理数据
  • 操作数据
  • 构建数据模型
  • 分析数据

Pandas主要特点

Pandas 主要包括以下几个特点:

  • 它提供了一个简单、高效、带有默认标签(也可以自定义标签)的 DataFrame 对象。
  • 能够快速得从不同格式的文件中加载数据(比如 Excel、CSV 、SQL文件),然后将其转换为可处理的对象;
  • 能够按数据的行、列标签进行分组,并对分组后的对象执行聚合和转换操作;
  • 能够很方便地实现数据归一化操作和缺失值处理;
  • 能够很方便地对 DataFrame 的数据列进行增加、修改或者删除的操作;
  • 能够处理不同格式的数据集,比如矩阵数据、异构数据表、时间序列等;
  • 提供了多种处理数据集的方式,比如构建子集、切片、过滤、分组以及重新排序等。

上述知识点将在后续学习中为大家一一讲解。

Pandas主要优势

与其它语言的数据分析包相比,Pandas 具有以下优势:

  • Pandas 的 DataFrame 和 Series 构建了适用于数据分析的存储结构;
  • Pandas 简洁的 API 能够让你专注于代码的核心层面;
  • Pandas 实现了与其他库的集成,比如 Scipy、scikit-learn 和 Matplotlib;
  • Pandas 官方网站提供了完善资料支持,及其良好的社区环境。

Pandas内置数据结构

我们知道,构建和处理二维、多维数组是一项繁琐的任务。Pandas 为解决这一问题, 在 ndarray 数组(NumPy 中的数组)的基础上构建出了两种不同的数据结构,分别是 Series(一维数据结构)DataFrame(二维数据结构):

  • Series 是带标签的一维数组,这里的标签可以理解为索引,但这个索引并不局限于整数,它也可以是字符类型,比如 a、b、c 等;
  • DataFrame 是一种表格型数据结构,它既有行标签,又有列标签。

下面对上述数据结构做简单地的说明:

维度数据结构 说明
1 Series 该结构能够存储各种数据类型,比如字符数、整数、浮点数、Python 对象等,Series 用 name 和 index 属性来描述数据值。Series 是一维数据结构,因此其维数不可以改变。
2 DataFrame DataFrame 是一种二维表格型数据的结构,既有行索引,也有列索引。行索引是 index,列索引是 columns。

在创建该结构时,可以指定相应的索引值。

由于上述数据结构的存在,使得处理多维数组数任务变的简单。在《 Pandas Series入门教程 》和《 Pandas DataFrame入门教程(图解) 》两节中,我们会对上述数据结构做详细讲解。


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



150 次浏览
1次