如果想要应用自定义的函数,或者把其他库中的函数应用到 Pandas 对象中,有以下三种方法:
- 1) 操作整个 DataFrame 的函数:pipe()
- 2) 操作行或者列的函数:apply()
- 3) 操作单一元素的函数:applymap()
如何从上述函数中选择适合的函数,这取决于函数的操作对象。下面介绍了三种方法的使用。
操作整个数据表
通过给 pipe() 函数传递一个自定义函数和适当数量的参数值,从而操作 DataFrme 中的所有元素。下面示例,实现了数据表中的元素值依次加 3。
首先自定义一个函数,计算两个元素的加和,如下所示:
def adder(ele1,ele2): return ele1+ele2 |
然后使用自定义的函数对 DataFrame 进行操作:
df = pd.DataFrame(np.random.randn(4,3),columns=['c1','c2','c3'])
df.pipe(adder,3) |
完整的程序,如下所示:
import pandas as pd import numpy as np
def adder(ele1,ele2): return ele1+ele2
df = pd.DataFrame(np.random.randn(4,3),columns=['c1','c2','c3'])
print(df)
print(df.pipe(adder,3)) |
输出结果:
c1 c2 c3
0 1.989075 0.932426 -0.523568
1 -1.736317 0.703575 -0.819940
2 0.657279 -0.872929 0.040841
3 0.441424 1.170723 -0.629618
c1 c2 c3
0 4.989075 3.932426 2.476432
1 1.263683 3.703575 2.180060
2 3.657279 2.127071 3.040841
3 3.441424 4.170723 2.370382 |
如果要操作 DataFrame 的某一行或者某一列,可以使用 apply() 方法,该方法与描述性统计方法类似,都有可选参数 axis,并且默认按列操作。示例如下:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3']) df.apply(np.mean)
print(df.apply(np.mean)) |
输出结果:
col1 0.277214
col2 0.716651
col3 -0.250487
dtype: float64 |
传递轴参 axis=1, 表示逐行进行操作,示例如下:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3']) print(df) print (df.apply(np.mean,axis=1)) |
输出结果:
col1 col2 col3
0 0.210370 -0.662840 -0.281454
1 -0.875735 0.531935 -0.283924
2 1.036009 -0.958771 -1.048961
3 -1.266042 -0.257666 0.403416
4 0.496041 -1.071545 1.432817
0 -0.244641
1 -0.209242
2 -0.323908
3 -0.373431
4 0.285771
dtype: float64 |
求每一列中,最大值与最小值之差。示例如下:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3']) print(df.apply(lambda x: x.max() - x.min())) |
输出结果:
col1 3.538252
col2 2.904771
col3 2.650892
dtype: float64 |
操作单一元素
DataFrame 数据表结构的 applymap() 和 Series 系列结构的 map() 类似,它们都可以接受一个 Python 函数,并返回相应的值。
示例如下:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
print(df['col1'].map(lambda x:x*100)) |
输出结果:
0 -18.171706
1 1.582861
2 22.398156
3 32.395690
4 -133.143543
Name: col1, dtype: float64 |
下面示例使用了 applymap() 函数,如下所示:
import pandas as pd import numpy as np
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3']) print(df.applymap(lambda x:x*10)) print(df.apply(np.mean)) |
输出结果:
col1 col2 col3
0 -1.055926 7.952690 15.225932
1 9.362457 -12.230732 7.663450
2 2.910049 -2.782934 2.073905
3 -12.008132 -1.444989 5.988144
4 2.877850 6.563894 8.192513
#求均值:
col1 0.041726
col2 -0.038841
col3 0.782879
dtype: float64 |
|