求知 文章 文库 Lib 视频 Code iProcess 课程 认证 咨询 工具 火云堂 讲座吧   成长之路  
会员   
 
追随技术信仰

随时听讲座
每天看新闻
 

Tensorflow教程
1. 新手入门
1. 1 介绍
1. 2 下载与安装
1. 3 基本用法
2. 完整教程
2. 1 总览
2. 2 MNIST 数据下载
2. 3 MNIST机器学习入门
2. 4 深入MNIST
2. 5 TensorFlow运作方式入门
2. 6 卷积神经网络
2. 7 字词的向量表示
2. 8 递归神经网络
2. 9 曼德布洛特集合
2. 10 偏微分方程
3 进阶指南
3. 1总览
 
 

简介
139 次浏览
7次  
 捐助

本章的目的是让你了解和运行 TensorFlow!

在开始之前, 让我们先看一段使用 Python API 撰写的 TensorFlow 示例代码, 让你对将要学习的内容有初步的印象.

这段很短的 Python 程序生成了一些三维数据, 然后用一个平面拟合它.

import tensorflow as tf
import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型
#
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b

# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# 初始化变量
init = tf.initialize_all_variables()

# 启动图 (graph)
sess = tf.Session()
sess.run(init)

# 拟合平面
for step in xrange(0, 201):
sess.run(train)
if step % 20 == 0:
print step, sess.run(W), sess.run(b)

# 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]

为了进一步激发你的学习欲望, 我们想让你先看一下 TensorFlow 是如何解决一个经典的机器 学习问题的. 在神经网络领域, 最为经典的问题莫过于 MNIST 手写数字分类问题. 我们准备了 两篇不同的教程, 分别面向机器学习领域的初学者和专家. 如果你已经使用其它软件训练过许多 MNIST 模型, 请阅读高级教程 (红色药丸链接). 如果你以前从未听说过 MNIST, 请阅读初级教程 (蓝色药丸链接). 如果你的水平介于这两类人之间, 我们建议你先快速浏览初级教程, 然后再阅读高级教程.

图片由 CC BY-SA 4.0 授权; 原作者 W. Carter

如果你已经下定决心, 准备学习和安装 TensorFlow, 你可以略过这些文字, 直接阅读 后面的章节. 不用担心, 你仍然会看到 MNIST -- 在阐述 TensorFlow 的特性时, 我们还会使用 MNIST 作为一个样例.

推荐随后阅读:

 


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



139 次浏览
7次
 捐助
 

每天2个文档/视频
扫描微信二维码订阅
订阅技术月刊
获得每月300个技术资源
 
 

关于我们 | 联系我们 | 京ICP备10020922号 京公海网安备110108001071号