求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
要资料
 
 

Tensorflow教程
1. 新手入门
1. 1 介绍
1. 2 下载与安装
1. 3 基本用法
2. 完整教程
2. 1 总览
2. 2 MNIST 数据下载
2. 3 MNIST机器学习入门
2. 4 深入MNIST
2. 5 TensorFlow运作方式入门
2. 6 卷积神经网络
2. 7 字词的向量表示
2. 8 递归神经网络
2. 9 曼德布洛特集合
2. 10 偏微分方程
3 进阶指南
3. 1总览
3. 2变量:创建、初始化、保存和加载
3. 3TensorBoard:可视化学习
3. 4TensorBoard: 图表可视化
3. 5数据读取
3. 6线程和队列
3. 7增加一个新 Op
3. 8自定义数据读取
3. 9使用 GPUs
3. 10共享变量
4.资源
4.1总览
4.2BibTex 引用
4.3示例使用
4.4FAQ
4.5术语表
4.6 TENSOR排名、形状和类型
 
 

张量的阶、形状、数据类型
1176 次浏览
34次  

TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.

在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.

形状

TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:

 

形状可以通过Python中的整数列表或元祖(int list或tuples)来表示,也或者用TensorShape class.

数据类型

除了维度,Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:

 
 


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



1176 次浏览
34次
 捐助