|
|
张量的阶、形状、数据类型 |
|
1161 次浏览 |
34次 |
|
|
|
TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.
阶
在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.
t = [[1, 2,
3], [4, 5, 6], [7, 8, 9]]
|
你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i,
j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.
形状
TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:
形状可以通过Python中的整数列表或元祖(int list或tuples)来表示,也或者用TensorShape
class.
数据类型
除了维度,Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:
|
|
|
|
|