求知 文章 文库 Lib 视频 Code iProcess 课程 角色 咨询 工具 火云堂 讲座吧   成长之路  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 

Tensorflow教程
1. 新手入门
1. 1 介绍
1. 2 下载与安装
1. 3 基本用法
2. 完整教程
2. 1 总览
2. 2 MNIST 数据下载
2. 3 MNIST机器学习入门
2. 4 深入MNIST
2. 5 TensorFlow运作方式入门
2. 6 卷积神经网络
2. 7 字词的向量表示
2. 8 递归神经网络
2. 9 曼德布洛特集合
2. 10 偏微分方程
3 进阶指南
3. 1总览
3. 2变量:创建、初始化、保存和加载
3. 3TensorBoard:可视化学习
3. 4TensorBoard: 图表可视化
3. 5数据读取
3. 6线程和队列
3. 7增加一个新 Op
3. 8自定义数据读取
3. 9使用 GPUs
3. 10共享变量
4.资源
4.1总览
4.2BibTex 引用
4.3示例使用
4.4FAQ
4.5术语表
4.6 TENSOR排名、形状和类型
 
 

偏微分方程
109 次浏览
13 次
 捐助

TensorFlow 不仅仅是用来机器学习,它更可以用来模拟仿真。在这里,我们将通过模拟仿真几滴落入一块方形水池的雨点的例子,来引导您如何使用 TensorFlow 中的偏微分方程来模拟仿真的基本使用方法。

注:本教程最初是准备做为一个 IPython 的手册。

基本设置

首先,我们需要导入一些必要的引用。

#导入模拟仿真需要的库
import tensorflow as tf
import numpy as np

#导入可视化需要的库
import PIL.Image
from cStringIO import StringIO
from IPython.display import clear_output, Image, display

然后,我们还需要一个用于表示池塘表面状态的函数。

def DisplayArray(a, fmt='jpeg', rng=[0,1]):
"""Display an array as a picture."""
a = (a - rng[0])/float(rng[1] - rng[0])*255
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))

最后,为了方便演示,这里我们需要打开一个 TensorFlow 的交互会话(interactive session)。当然为了以后能方便调用,我们可以把相关代码写到一个可以执行的Python文件中。

sess = tf.InteractiveSession()

定义计算函数

def make_kernel(a):
"""Transform a 2D array into a convolution kernel"""
a = np.asarray(a)
a = a.reshape(list(a.shape) + [1,1])
return tf.constant(a, dtype=1)

def simple_conv(x, k):
"""A simplified 2D convolution operation"""
x = tf.expand_dims(tf.expand_dims(x, 0), -1)
y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
return y[0, :, :, 0]

def laplace(x):
"""Compute the 2D laplacian of an array"""
laplace_k = make_kernel([[0.5, 1.0, 0.5],
[1.0, -6., 1.0],
[0.5, 1.0, 0.5]])
return simple_conv(x, laplace_k)

定义偏微分方程

首先,我们需要创建一个完美的 500 × 500 的正方形池塘,就像是我们在现实中找到的一样。

N = 500

然后,我们需要创建了一个池塘和几滴将要坠入池塘的雨滴。

# Initial Conditions -- some rain drops hit a pond

# Set everything to zero
u_init = np.zeros([N, N], dtype="float32")
ut_init = np.zeros([N, N], dtype="float32")

# Some rain drops hit a pond at random points
for n in range(40):
a,b = np.random.randint(0, N, 2)
u_init[a,b] = np.random.uniform()

DisplayArray(u_init, rng=[-0.1, 0.1])

现在,让我们来指定该微分方程的一些详细参数。

# Parameters:
# eps -- time resolution
# damping -- wave damping
eps = tf.placeholder(tf.float32, shape=())
damping = tf.placeholder(tf.float32, shape=())

# Create variables for simulation state
U = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

# Discretized PDE update rules
U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)

# Operation to update the state
step = tf.group(
U.assign(U_),
Ut.assign(Ut_))

开始仿真

为了能看清仿真效果,我们可以用一个简单的 for 循环来远行我们的仿真程序。

# Initialize state to initial conditions
tf.initialize_all_variables().run()

# Run 1000 steps of PDE
for i in range(1000):
# Step simulation
step.run({eps: 0.03, damping: 0.04})
# Visualize every 50 steps
if i % 50 == 0:
clear_output()
DisplayArray(U.eval(), rng=[-0.1, 0.1])

看!! 雨点落在池塘中,和现实中一样的泛起了涟漪。


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



109 次浏览
13 次
 捐助
 

每天2个文档/视频
扫描微信二维码订阅
订阅技术月刊
获得每月300个技术资源
 
 

关于我们 | 联系我们 | 京ICP备10020922号 京公海网安备110108001071号