求知 文章 文库 Lib 视频 Code iProcess 课程 认证 咨询 工具 火云堂 讲座吧   成长之路  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 

Tensorflow教程
1. 新手入门
1. 1 介绍
1. 2 下载与安装
1. 3 基本用法
2. 完整教程
2. 1 总览
2. 2 MNIST 数据下载
2. 3 MNIST机器学习入门
2. 4 深入MNIST
2. 5 TensorFlow运作方式入门
2. 6 卷积神经网络
2. 7 字词的向量表示
2. 8 递归神经网络
2. 9 曼德布洛特集合
2. 10 偏微分方程
3 进阶指南
3. 1总览
3. 2变量:创建、初始化、保存和加载
3. 3TensorBoard:可视化学习
3. 4TensorBoard: 图表可视化
3. 5数据读取
3. 6线程和队列
3. 7增加一个新 Op
3. 8自定义数据读取
3. 9使用 GPUs
3. 10共享变量
4.资源
4.1总览
4.2BibTex 引用
4.3示例使用
4.4FAQ
4.5术语表
4.6 TENSOR排名、形状和类型
 
 

综述 Overview
28 次浏览
3次  
 捐助

Variables: 创建,初始化,保存,和恢复

TensorFlow Variables 是内存中的容纳 tensor 的缓存。这一小节介绍了用它们在模型训练时(during training)创建、保存和更新模型参数(model parameters) 的方法。

参看教程

TensorFlow 机制 101

用 MNIST 手写数字识别作为一个小例子,一步一步的将使用 TensorFlow 基础架构(infrastructure)训练大规模模型的细节做详细介绍。

参看教程

TensorBoard: 学习过程的可视化

对模型进行训练和评估时,TensorBoard 是一个很有用的可视化工具。此教程解释了创建和运行 TensorBoard 的方法,和使用摘要操作(Summary ops)的方法,通过添加摘要操作(Summary ops),可以自动把数据传输到 TensorBoard 所使用的事件文件。

参看教程

TensorBoard: 图的可视化

此教程介绍了在 TensorBoard 中使用可视化工具的方法,它可以帮助你理解张量流图的过程并 debug。

参看教程

数据读入

此教程介绍了把数据传入 TensorSlow 程序的三种主要的方法: Feeding, Reading 和 Preloading.

参看教程

线程和队列

此教程介绍 TensorFlow 中为了更容易进行异步和并发训练的各种不同结构(constructs)。

参看教程

添加新的 Op

TensorFlow 已经提供一整套节点操作()operation),你可以在你的 graph 中随意使用它们,不过这里有关于添加自定义操作(custom op)的细节。

参看教程

自定义数据的 Readers

如果你有相当大量的自定义数据集合,可能你想要对 TensorFlow 的 Data Readers 进行扩展,使它能直接以数据自身的格式将其读入。

参看教程

使用 GPUs

此教程描述了用多个 GPU 构建和运行模型的方法。

参看教程

共享变量 Sharing Variables

当在多 GPU 上部署大型的模型,或展开复杂的 LSTMs 或 RNNs 时,在模型构建代码的不同位置对许多相同的变量(Variable)进行读写常常是必须的。设计变量作用域(Variable Scope)机制的目的就是为了帮助上述任务的实现。

参看教程


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



28 次浏览
3次
 捐助
 

每天2个文档/视频
扫描微信二维码订阅
订阅技术月刊
获得每月300个技术资源
 
 

关于我们 | 联系我们 | 京ICP备10020922号 京公海网安备110108001071号