求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
要资料
 
 

Tensorflow教程
1. 新手入门
1. 1 介绍
1. 2 下载与安装
1. 3 基本用法
2. 完整教程
2. 1 总览
2. 2 MNIST 数据下载
2. 3 MNIST机器学习入门
2. 4 深入MNIST
2. 5 TensorFlow运作方式入门
2. 6 卷积神经网络
2. 7 字词的向量表示
2. 8 递归神经网络
2. 9 曼德布洛特集合
2. 10 偏微分方程
3 进阶指南
3. 1总览
3. 2变量:创建、初始化、保存和加载
3. 3TensorBoard:可视化学习
3. 4TensorBoard: 图表可视化
3. 5数据读取
3. 6线程和队列
3. 7增加一个新 Op
3. 8自定义数据读取
3. 9使用 GPUs
3. 10共享变量
4.资源
4.1总览
4.2BibTex 引用
4.3示例使用
4.4FAQ
4.5术语表
4.6 TENSOR排名、形状和类型
 
 

循环神经网络
886 次浏览
44次  

介绍

可以在 this great article 查看循环神经网络(RNN)以及 LSTM 的介绍。

语言模型

此教程将展示如何在高难度的语言模型中训练循环神经网络。该问题的目标是获得一个能确定语句概率的概率模型。为了做到这一点,通过之前已经给出的词语来预测后面的词语。我们将使用 PTB(Penn Tree Bank) 数据集,这是一种常用来衡量模型的基准,同时它比较小而且训练起来相对快速。

语言模型是很多有趣难题的关键所在,比如语音识别,机器翻译,图像字幕等。它很有意思--可以参看 here

本教程的目的是重现 Zaremba et al., 2014 的成果,他们在 PTB 数据集上得到了很棒的结果。

教程文件

本教程使用的下面文件的目录是 models/rnn/ptb:

文件

作用

ptb_word_lm.py

在 PTB 数据集上训练一个语言模型.

reader.py

reader.py

下载及准备数据

本教程需要的数据在 data/ 路径下,来源于 Tomas Mikolov 网站上的 PTB 数据集http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz。

该数据集已经预先处理过并且包含了全部的 10000 个不同的词语,其中包括语句结束标记符,以及标记稀有词语的特殊符号 (<unk>) 。我们在 reader.py 中转换所有的词语,让他们各自有唯一的整型标识符,便于神经网络处理。

模型

LSTM

模型的核心由一个 LSTM 单元组成,其可以在某时刻处理一个词语,以及计算语句可能的延续性的概率。网络的存储状态由一个零矢量初始化并在读取每一个词语后更新。而且,由于计算上的原因,我们将以 batch_size 为最小批量来处理数据。

基础的伪代码就像下面这样:

lstm = rnn_cell.BasicLSTMCell(lstm_size)
# 初始化 LSTM 存储状态.
state = tf.zeros([batch_size, lstm.state_size])

loss = 0.0
for current_batch_of_words in words_in_dataset:
# 每次处理一批词语后更新状态值.
output, state = lstm(current_batch_of_words, state)

# LSTM 输出可用于产生下一个词语的预测
logits = tf.matmul(output, softmax_w) + softmax_b
probabilities = tf.nn.softmax(logits)
loss += loss_function(probabilities, target_words)

截断反向传播

为使学习过程易于处理,通常的做法是将反向传播的梯度在(按时间)展开的步骤上照一个固定长度(num_steps)截断。 通过在一次迭代中的每个时刻上提供长度为 num_steps 的输入和每次迭代完成之后反向传导,这会很容易实现。

一个简化版的用于计算图创建的截断反向传播代码:

# 一次给定的迭代中的输入占位符.
words = tf.placeholder(tf.int32, [batch_size, num_steps])

lstm = rnn_cell.BasicLSTMCell(lstm_size)
# 初始化 LSTM 存储状态.
initial_state = state = tf.zeros([batch_size, lstm.state_size])

for i in range(len(num_steps)):
# 每处理一批词语后更新状态值.
output, state = lstm(words[:, i], state)

# 其余的代码.
# ...

final_state = state

下面展现如何实现迭代整个数据集:

# 一个 numpy 数组,保存每一批词语之后的 LSTM 状态.
numpy_state = initial_state.eval()
total_loss = 0.0
for current_batch_of_words in words_in_dataset:
numpy_state, current_loss = session.run([final_state, loss],
# 通过上一次迭代结果初始化 LSTM 状态.
feed_dict={initial_state: numpy_state, words: current_batch_of_words})
total_loss += current_loss

输入

在输入 LSTM 前,词语 ID 被嵌入到了一个密集的表示中(查看 矢量表示教程)。这种方式允许模型高效地表示词语,也便于写代码:

# embedding_matrix 张量的形状是: [vocabulary_size, embedding_size]
word_embeddings = tf.nn.embedding_lookup(embedding_matrix, word_ids)

嵌入的矩阵会被随机地初始化,模型会学会通过数据分辨不同词语的意思。

损失函数

我们想使目标词语的平均负对数概率最小

实现起来并非很难,而且函数 sequence_loss_by_example 已经有了,可以直接使用。

论文中的典型衡量标准是每个词语的平均困惑度(perplexity),计算式为

同时我们会观察训练过程中的困惑度值(perplexity)。

多个 LSTM 层堆叠

要想给模型更强的表达能力,可以添加多层 LSTM 来处理数据。第一层的输出作为第二层的输入,以此类推。

类 MultiRNNCell 可以无缝的将其实现:

lstm = rnn_cell.BasicLSTMCell(lstm_size)
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers)

initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)
for i in range(len(num_steps)):
# 每次处理一批词语后更新状态值.
output, state = stacked_lstm(words[:, i], state)

# 其余的代码.
# ...

final_state = state

编译并运行代码

首先需要构建库,在 CPU 上编译:

bazel build -c opt tensorflow/models/rnn/ptb:ptb_word_lm

如果你有一个强大的 GPU,可以运行:

bazel build -c opt --config=cuda tensorflow/models/rnn/ptb:ptb_word_lm

运行模型:

bazel-bin/tensorflow/models/rnn/ptb/ptb_word_lm \
--data_path=/tmp/simple-examples/data/ --alsologtostderr --model small

教程代码中有 3 个支持的模型配置参数:"small", "medium" 和 "large"。它们指的是 LSTM 的大小,以及用于训练的超参数集。

模型越大,得到的结果应该更好。在测试集中 small 模型应该可以达到低于 120 的困惑度(perplexity),large 模型则是低于 80,但它可能花费数小时来训练。

除此之外?

还有几个优化模型的技巧没有提到,包括:

随时间降低学习率,

LSTM 层间 dropout.

继续学习和更改代码以进一步改善模型吧。


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



886 次浏览
44次
 捐助