求知 文章 文库 Lib 视频 Code iProcess 课程 认证 咨询 工具 火云堂 讲座吧   成长之路  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 

Tensorflow教程
1. 新手入门
1. 1 介绍
1. 2 下载与安装
1. 3 基本用法
2. 完整教程
2. 1 总览
2. 2 MNIST 数据下载
2. 3 MNIST机器学习入门
2. 4 深入MNIST
2. 5 TensorFlow运作方式入门
2. 6 卷积神经网络
2. 7 字词的向量表示
2. 8 递归神经网络
2. 9 曼德布洛特集合
2. 10 偏微分方程
3 进阶指南
3. 1总览
3. 2变量:创建、初始化、保存和加载
3. 3TensorBoard:可视化学习
3. 4TensorBoard: 图表可视化
3. 5数据读取
3. 6线程和队列
3. 7增加一个新 Op
3. 8自定义数据读取
3. 9使用 GPUs
3. 10共享变量
4.资源
4.1总览
4.2BibTex 引用
4.3示例使用
4.4FAQ
4.5术语表
4.6 TENSOR排名、形状和类型
 
 

变量:创建、初始化、保存和加载
98 次浏览
7次
 捐助

当训练模型时,用变量来存储和更新参数。变量包含张量 (Tensor)存放于内存的缓存区。建模时它们需要被明确地初始化,模型训练后它们必须被存储到磁盘。这些变量的值可在之后模型训练和分析是被加载。

本文档描述以下两个TensorFlow类。点击以下链接可查看完整的API文档:

tf.Variable 类

tf.train.Saver 类

创建

当创建一个变量时,你将一个张量作为初始值传入构造函数Variable()。TensorFlow提供了一系列操作符来初始化张量,初始值是常量或是随机值。

注意,所有这些操作符都需要你指定张量的shape。那个形状自动成为变量的shape。变量的shape通常是固定的,但TensorFlow提供了高级的机制来重新调整其行列数。

# Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
name="weights")
biases = tf.Variable(tf.zeros([200]), name="biases")

调用tf.Variable()添加一些操作(Op, operation)到graph:

一个Variable操作存放变量的值。

一个初始化op将变量设置为初始值。这事实上是一个tf.assign操作.

初始值的操作,例如示例中对biases变量的zeros操作也被加入了graph。

tf.Variable的返回值是Python的tf.Variable类的一个实例。

初始化

变量的初始化必须在模型的其它操作运行之前先明确地完成。最简单的方法就是添加一个给所有变量初始化的操作,并在使用模型之前首先运行那个操作。

你或者可以从检查点文件中重新获取变量值,详见下文。

使用tf.initialize_all_variables()添加一个操作对变量做初始化。记得在完全构建好模型并加载之后再运行那个操作。

# Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
name="weights")
biases = tf.Variable(tf.zeros([200]), name="biases")
...
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()

# Later, when launching the model
with tf.Session() as sess:
# Run the init operation.
sess.run(init_op)
...
# Use the model
...

由另一个变量初始化

你有时候会需要用另一个变量的初始化值给当前变量初始化。由于tf.initialize_all_variables()是并行地初始化所有变量,所以在有这种需求的情况下需要小心。

用其它变量的值初始化一个新的变量时,使用其它变量的initialized_value()属性。你可以直接把已初始化的值作为新变量的初始值,或者把它当做tensor计算得到一个值赋予新变量。

# Create a variable with a random value.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
name="weights")
# Create another variable with the same value as 'weights'.
w2 = tf.Variable(weights.initialized_value(), name="w2")
# Create another variable with twice the value of 'weights'
w_twice = tf.Variable(weights.initialized_value() * 0.2, name="w_twice")

自定义初始化

tf.initialize_all_variables()函数便捷地添加一个op来初始化模型的所有变量。你也可以给它传入一组变量进行初始化。详情请见Variables Documentation,包括检查变量是否被初始化。

保存和加载

最简单的保存和恢复模型的方法是使用tf.train.Saver对象。构造器给graph的所有变量,或是定义在列表里的变量,添加save和restoreops。saver对象提供了方法来运行这些ops,定义检查点文件的读写路径。

检查点文件

变量存储在二进制文件里,主要包含从变量名到tensor值的映射关系。

当你创建一个Saver对象时,你可以选择性地为检查点文件中的变量挑选变量名。默认情况下,将每个变量Variable.name属性的值。

保存变量

用tf.train.Saver()创建一个Saver来管理模型中的所有变量。

# Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
# Do some work with the model.
..
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print "Model saved in file: ", save_path

恢复变量

用同一个Saver对象来恢复变量。注意,当你从文件中恢复变量时,不需要事先对它们做初始化。

# Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print "Model restored."
# Do some work with the model
...

选择存储和恢复哪些变量

如果你不给tf.train.Saver()传入任何参数,那么saver将处理graph中的所有变量。其中每一个变量都以变量创建时传入的名称被保存。

有时候在检查点文件中明确定义变量的名称很有用。举个例子,你也许已经训练得到了一个模型,其中有个变量命名为"weights",你想把它的值恢复到一个新的变量"params"中。

有时候仅保存和恢复模型的一部分变量很有用。再举个例子,你也许训练得到了一个5层神经网络,现在想训练一个6层的新模型,可以将之前5层模型的参数导入到新模型的前5层中。

你可以通过给tf.train.Saver()构造函数传入Python字典,很容易地定义需要保持的变量及对应名称:键对应使用的名称,值对应被管理的变量。

注意:

如果需要保存和恢复模型变量的不同子集,可以创建任意多个saver对象。同一个变量可被列入多个saver对象中,只有当saver的restore()函数被运行时,它的值才会发生改变。

如果你仅在session开始时恢复模型变量的一个子集,你需要对剩下的变量执行初始化op。详情请见tf.initialize_variables()。

# Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
# Add ops to save and restore only 'v2' using the name "my_v2"
saver = tf.train.Saver({"my_v2": v2})
# Use the saver object normally after that.
...

您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



98 次浏览
7次
 捐助
 

每天2个文档/视频
扫描微信二维码订阅
订阅技术月刊
获得每月300个技术资源
 
 

关于我们 | 联系我们 | 京ICP备10020922号 京公海网安备110108001071号