求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
 


业务架构设计
4月18-19日 在线直播



基于UML和EA进行系统分析设计
4月25-26日 北京+在线



AI 智能化软件测试方法与实践
5月23-24日 上海+在线
 
 
 

Kubernetes教程
Kubernetes概述
Kubernetes设计架构
kubernetes设计理念
创建Kubernetes集群
基于Docker本地运行Kubernetes
使用Vagrant
本地运行Kubrenetes v1.0
Google Computer Engine入门
AWS EC2快速入门
在Azure上使用CoreOS和Weave的 Kubernetes
从零开始k8s
CoreOS部署Kubernetes集群
CloudStack部署Kubernetes集群
vSphere部署Kubernetes集群
Ferdora部署Kubernetes集群
CentOS部署Kubernetes集群
Ubuntu物理节点上部署Kubernets集群
Mesos部署Kubernetes集群
Kubernetes用户指南:应用程序管理
名词解释 Pods
名词解释 Labels
名词解释:Namespace
名词解释 Replication Controller
名词解释:Node
名词解释:ReplicaSets
名词解释 Services
名词解释 Volumes
名词解释:PV/PVC/StorageClass
名称解释:Deployment
名词解释:Secret
名词解释:StatefulSet
名词解释:DaemonSet
名词解释:Service Account
名词解释:CronJob
名词解释:Job
名词解释:Security Context和PSP
名词解释:Resource Quotas
名词解释:Network Policy
名词解释:Ingress
名词解释:ThirdPartyResources
名词解释:ConfigMap
名词解释:PodPreset
配置Kubernetes
管理应用:部署持续运行的应用
Horizontal Pod Autoscaling
管理应用:连接应用
管理应用: 在生产环境中使用Pods和容器
Kubernetes UI
Kube-API Server
授权插件
认证插件
API Server端口配置
Admission Controller
Service Accounts集群管理指南
使用Kubernetes在云上原生部署cassandra
Spark例子
Storm 示例
示例: 分布式任务队列 Celery, RabbitMQ和Flower
Kubernetes在Hazelcast平台上部署原生云应用
Meteor on Kuberenetes
配置文件使用入门
环境向导示例
在Kubernetes上运行你的第一个容器
kubectl
安装和设置kubectl
kubectl annotate
kubectl api-versions
kubectl apply
kubectl attach
kubectl cluster-info
kubectl config
kubectl config set-cluster
kubectl config set-context
kubectl config set-credentials
kubectl config set
kubectl config unset
kubectl config use-context
kubectl config view
kubectl create
kubectl delete
kubectl describe
kubectl edit
kubectl exec
kubectl logs
kubectl version
故障排查
应用程序相关的故障排查
 
 

Spark例子
 
1697 次浏览
46次  

在下面的例子中,你会学习使用Kubernetes和Docker创建一个能够使用的阿帕奇Spark集群。我们使用Spark的单例模式创建一个Spark master节点服务和一系列Spark workers节点。

对于不耐心的专家,直接跳到这个部分

资源

Docker镜像很重,基于https://github.com/mattf/docker-spark

步骤0:预备知识

下面的例子假设你已经安装和运行一个Kubernetes集群,并且你也下载好kubectl命令行工具以及配置在你的path中。

步骤一:启动Master服务

Master服务是一个Spark集群的主服务(或头服务)。

使用examples/spark/spark-master.json文件创建运行在Master服务中的pod。

$ kubectl create -f examples/spark/spark-master.json

然后使用examples/spark/spark-master-service.json文件创建一个逻辑服务端点供Spark workers节点使用连接Matser pod。

$ kubectl create -f examples/spark/spark-master-service.json

检查Master节点使用运行并且能够连接

检查日志查看master节点的状态:

$ kubectl logs spark-master

starting org.apache.spark.deploy.master.Master, logging to /opt/spark-1.4.0-bin-hadoop2.6/sbin/../logs/spark--org.apache.spark.deploy.master.Master-1-spark-master.out
Spark Command: /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java -cp /opt/spark-1.4.0-bin-hadoop2.6/sbin/../conf/:/opt/spark-1.4.0-bin-hadoop2.6/lib/spark-assembly-1.4.0-hadoop2.6.0.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-api-jdo-3.2.6.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-rdbms-3.2.9.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-core-3.2.10.jar -Xms512m -Xmx512m -XX:MaxPermSize=128m org.apache.spark.deploy.master.Master --ip spark-master --port 7077 --webui-port 8080
========================================
15/06/26 14:01:49 INFO Master: Registered signal handlers for [TERM, HUP, INT]
15/06/26 14:01:50 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/06/26 14:01:51 INFO SecurityManager: Changing view acls to: root
15/06/26 14:01:51 INFO SecurityManager: Changing modify acls to: root
15/06/26 14:01:51 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
15/06/26 14:01:51 INFO Slf4jLogger: Slf4jLogger started
15/06/26 14:01:51 INFO Remoting: Starting remoting
15/06/26 14:01:52 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@spark-master:7077]
15/06/26 14:01:52 INFO Utils: Successfully started service 'sparkMaster' on port 7077.
15/06/26 14:01:52 INFO Utils: Successfully started service on port 6066.
15/06/26 14:01:52 INFO StandaloneRestServer: Started REST server for submitting applications on port 6066
15/06/26 14:01:52 INFO Master: Starting Spark master at spark://spark-master:7077
15/06/26 14:01:52 INFO Master: Running Spark version 1.4.0
15/06/26 14:01:52 INFO Utils: Successfully started service 'MasterUI' on port 8080.
15/06/26 14:01:52 INFO MasterWebUI: Started MasterWebUI at http://10.244.2.34:8080
15/06/26 14:01:53 INFO Master: I have been elected leader! New state: ALIVE

步骤二:启动Spark workers

在Spark集群中Spark workers做繁重的工作。它们为你的程序提供计算资源和数据缓存的能力。

Spark workers需要Master服务支持才能运行。

使用examples/spark/spark-worker-controller.json文件创建复制控制器管理workers pod。

$ kubectl create -f examples/spark/spark-worker-controller.json

检查workers节点是否运行

步骤三:使用集群做点什么

获取Master服务的地址和端口。

使用SSH连接集群中的一个节点,在GCE/GKE(【译者注】指云服务谷歌计算引擎和谷歌Kubernetes引擎)上,你可以使用开发者控制台或者运行gcloud compute ssh ,name可以通过kubectl get nodes命令获得。

一旦登陆成功就可以使用Spark基础镜像了。在镜像中有一个脚本用来设置基于Master的IP和端口环境。

结果

现在你已经为你的Spark master节点和Spark workers节点创建了服务、复制控制器和pods。你可以在下一篇文档中继续使用这个例子以及使用这个Spark集群。点击Spark文档获取更多信息。

tl;dr

kubectl create -f spark-master.json

kubectl create -f spark-master-service.json

Make sure the Master Pod is running (use: kubectl get pods).

kubectl create -f spark-worker-controller.json

 


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



1697 次浏览
46次
 捐助