求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 
 
C++并发编程(中文版)
前言
第1章 你好,C++的并发世界!
1.1 何谓并发
1.2 为什么使用并发?
1.3 C++中的并发和多线程
1.4 开始入门
1.5 本章总结
第2章 线程管理
2.1 线程管理的基础
2.2 向线程函数传递参数
2.3 转移线程所有权
2.4 运行时决定线程数量
2.5 识别线程
2.6 本章总结
第3章 线程间共享数据
3.1 共享数据带来的问题
3.2 使用互斥量保护共享数据
3.3 保护共享数据的替代设施
3.4 本章总结
第4章 同步并发操作
4.1 等待一个事件或其他条件
4.2 使用期望等待一次性事件
4.3 限定等待时间
4.4 使用同步操作简化代码
4.5 本章总结
第5章 C++内存模型和原子类型操作
5.1 内存模型基础
5.2 C++中的原子操作和原子类型
5.3 同步操作和强制排序
5.4 本章总结
第6章 基于锁的并发数据结构设计
6.1 为并发设计的意义何在?
6.2 基于锁的并发数据结构
6.3 基于锁设计更加复杂的数据结构
6.4 本章总结
第7章 无锁并发数据结构设计
7.1 定义和意义
7.2 无锁数据结构的例子
7.3 对于设计无锁数据结构的指导建议
7.4 本章总结
第8章 并发代码设计
8.1 线程间划分工作的技术
8.2 影响并发代码性能的因素
8.3 为多线程性能设计数据结构
8.4 设计并发代码的注意事项
8.5 在实践中设计并发代码
 

 
目录
定义和意义
作者:Anthony Williams  译者:陈晓伟
17 次浏览
1次  

7.1 定义和意义

7.1.1 非阻塞数据结构

7.1.2 无锁数据结构

7.1.3 无等待数据结构

7.1.4 无锁数据结构的利与弊

7.1 定义和意义

使用互斥量、条件变量,以及“期望”来同步阻塞数据的算法和数据结构。应用调用库函数,将会挂起一个执行线程,直到其他线程完成某个特定的动作。库函数将调用阻塞操作来对线程进行阻塞,在阻塞移除前,线程无法继续自己的任务。通常,操作系统会完全挂起一个阻塞线程(并将其时间片交给其他线程),直到其被其他线程“解阻塞”;“解阻塞”的方式很多,比如解锁一个互斥锁、通知条件变量达成,或让“期望”就绪。

不使用阻塞库的数据结构和算法,被称为无阻塞结构。不过,无阻塞的数据结构并非都是无锁的,那么就让我们见识一下各种各样的无阻塞数据结构吧!

7.1.1 非阻塞数据结构

在第5章中,我们使用std::atomic_flag实现了一个简单的自旋锁。一起回顾一下这段代码。

清单7.1 使用std::atomic_flag实现了一个简单的自旋锁

  1. class spinlock_mutex
  2. {
  3. std::atomic_flag flag;
  4. public:
  5. spinlock_mutex():
  6. flag(ATOMIC_FLAG_INIT)
  7. {}
  8. void lock()
  9. {
  10. while(flag.test_and_set(std::memory_order_acquire));
  11. }
  12. void unlock()
  13. {
  14. flag.clear(std::memory_order_release);
  15. }
  16. };

这段代码没有调用任何阻塞函数,lock()只是让循环持续调用test_and_set(),并返回false。这就是为什么取名为“自旋锁”的原因——代码“自旋”于循环当中。所以,这里没有阻塞调用,任意代码使用互斥量来保护共享数据都是非阻塞的。不过,自旋锁并不是无锁结构。这里用了一个锁,并且一次能锁住一个线程。让我们来看一下无锁结构的具体定义,这将有助于你判断哪些类型的数据结构是无锁的。

7.1.2 无锁数据结构

作为无锁结构,就意味着线程可以并发的访问这个数据结构。线程不能做相同的操作;一个无锁队列可能允许一个线程进行压入数据,另一个线程弹出数据,当有两个线程同时尝试添加元素时,这个数据结构将被破坏。不仅如此,当其中一个访问线程被调度器中途挂起时,其他线程必须能够继续完成自己的工作,而无需等待挂起线程。

具有“比较/交换”操作的数据结构,通常在“比较/交换”实现中都有一个循环。使用“比较/交换”操作的原因:当有其他线程同时对指定数据的修改时,代码将尝试恢复数据。当其他线程被挂起时,“比较/交换”操作执行成功,那么这样的代码就是无锁的。当执行失败时,就需要一个自旋锁了,且这个结构就是“非阻塞-有锁”的结构。

无锁算法中的循环会让一些线程处于“饥饿”状态。如有线程在“错误”时间执行,那么第一个线程将会不停得尝试自己所要完成的操作(其他程序继续执行)。“无锁-无等待”数据结构,就为了避免这种问题存在的。

7.1.3 无等待数据结构

无等待数据结构就是:首先,是无锁数据结构;并且,每个线程都能在有限的步数内完成操作,暂且不管其他线程是如何工作的。由于会和别的线程产生冲突,所以算法可以进行无数次尝试,因此并不是无等待的。

正确实现一个无锁的结构是十分困难的。因为,要保证每一个线程都能在有限步骤里完成操作,就需要保证每一个操作可以被一次性执行完成;当有线程执行某个操作时,不会让其他线程的操作失败。这就会让算法中所使用到的操作变的相当复杂。

考虑到获取无锁或无等待的数据结构所有权都很困难,那么就有理由来写一个数据结构了;需要保证的是,所要得获益要大于实现成本。那么,就先来找一下实现成本和所得获益的平衡点吧!

7.1.4 无锁数据结构的利与弊

使用无锁结构的主要原因:将并发最大化。使用基于锁的容器,会让线程阻塞或等待;互斥锁削弱了结构的并发性。在无锁数据结构中,某些线程可以逐步执行。在无等待数据结构中,无论其他线程当时在做什么,每一个线程都可以转发进度。这种理想的方式实现起来很难。结构太简单,反而不容易写,因为其就是一个自旋锁。

使用无锁数据结构的第二个原因就是鲁棒性。当一个线程在获取一个锁时被杀死,那么数据结构将被永久性的破坏。不过,当线程在无锁数据结构上执行操作,在执行到一半死亡时,数据结构上的数据没有丢失(除了线程本身的数据),其他线程依旧可以正常执行。

另一方面,当不能限制访问数据结构的线程数量时,就需要注意不变量的状态,或选择替代品来保持不变量的状态。同时,还需要注意操作的顺序约束。为了避免未定义行为,及相关的数据竞争,就必须使用原子操作对修改操作进行限制。不过,仅使用原子操作时不够的;需要确定被其他线程看到的修改,是遵循正确的顺序。

因为,没有任何锁(有可能存在活锁),死锁问题不会困扰无锁数据结构。活锁的产生是,两个线程同时尝试修改数据结构,但每个线程所做的修改操作都会让另一个线程重启,所以两个线程就会陷入循环,多次的尝试完成自己的操作。试想有两个人要过独木桥,当两个人从两头向中间走的时候,他们会在中间碰到,然后不得不再走回出发的地方,再次尝试过独木桥。这里,要打破僵局,除非有人先到独木桥的另一端(或是商量好了,或是走的快,或纯粹是运气),要不这个循环将一直重复下去。不过活锁的存在时间并不久,因为其依赖于线程调度。所以其只是对性能有所消耗,而不是一个长期的问题;但这个问题仍需要关注。根据定义,无等待的代码不会被活锁所困扰,因其操作执行步骤是有上限的。换个角度,无等待的算法要比等待算法的复杂度高,且即使没有其他线程访问数据结构,也可能需要更多步骤来完成对应操作。

这就是“无锁-无等待”代码的缺点:虽然提高了并发访问的能力,减少了单个线程的等待时间,但是其可能会将整体性能拉低。首先,原子操作的无锁代码要慢于无原子操作的代码,原子操作就相当于无锁数据结构中的锁。不仅如此,硬件必须通过同一个原子变量对线程间的数据进行同步。在第8章,你将看到与“乒乓”缓存相关的原子变量(多个线程访问同时进行访问),将会成为一个明显的性能瓶颈。在提交代码之前,无论是基于锁的数据结构,还是无锁的数据结构,对性能的检查是很重要的(最坏的等待时间,平均等待时间,整体执行时间,或者其他指标)。

让我们先来看几个例子。


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



17 次浏览
1次