求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 
 
机器学习教程
1. 入门
2. 平均中位数模式
3. 标准差
4. 百分位数
5. 数据分布
6. 正态数据分布
7. 散点图
8. 线性回归
9. 多项式回归
10. 多元回归
11. 缩放
12. 训练/测试
13. 决策树
 

 
目录
机器学习 - 缩放
31 次浏览
1次  

特征缩放(Scale Features)

当您的数据拥有不同的值,甚至使用不同的度量单位时,可能很难比较它们。与米相比,公斤是多少?或者海拔比较时间呢?

这个问题的答案是缩放。我们可以将数据缩放为易于比较的新值。

请看下表,它与我们在 多元回归 一章中使用的数据集相同,但是这次,Volume 列包含的单位是升,而不是 ccm(1.0 而不是 1000)。

Car Model Volume Weight CO2
Toyota Aygo 1.0 790 99
Mitsubishi Space Star 1.2 1160 95
Skoda Citigo 1.0 929 95
Fiat 500 0.9 865 90
Mini Cooper 1.5 1140 105
VW Up! 1.0 929 105
Skoda Fabia 1.4 1109 90
Mercedes A-Class 1.5 1365 92
Ford Fiesta 1.5 1112 98
Audi A1 1.6 1150 99
Hyundai I20 1.1 980 99
Suzuki Swift 1.3 990 101
Ford Fiesta 1.0 1112 99
Honda Civic 1.6 1252 94
Hundai I30 1.6 1326 97
Opel Astra 1.6 1330 97
BMW 1 1.6 1365 99
Mazda 3 2.2 1280 104
Skoda Rapid 1.6 1119 104
Ford Focus 2.0 1328 105
Ford Mondeo 1.6 1584 94
Opel Insignia 2.0 1428 99
Mercedes C-Class 2.1 1365 99
Skoda Octavia 1.6 1415 99
Volvo S60 2.0 1415 99
Mercedes CLA 1.5 1465 102
Audi A4 2.0 1490 104
Audi A6 2.0 1725 114
Volvo V70 1.7 1523 109
BMW 5 2.0 1705 114
Mercedes E-Class 2.1 1605 115
Volvo XC70 2.0 1746 117
Ford B-Max 1.6 1235 104
BMW 2 1.6 1390 108
Opel Zafira 1.6 1405 109
Mercedes SLK 2.5 1395 120

很难将排量 1.0 与车重 790 进行比较,但是如果将它们都缩放为可比较的值,我们可以很容易地看到一个值与另一个值相比有多少。

缩放数据有多种方法,在本教程中,我们将使用一种称为标准化(standardization)的方法。

标准化方法使用以下公式:

z = (x - u) / s

其中 z 是新值,x 是原始值,u 是平均值,s 是标准差。

如果从上述数据集中获取 weight 列,则第一个值为 790,缩放后的值为:

(790 - 1292.23) / 238.74 = -2.1

如果从上面的数据集中获取 volume 列,则第一个值为 1.0,缩放后的值为:

(1.0 - 1.61) / 0.38 = -1.59

现在,您可以将 -2.1 与 -1.59 相比较,而不是比较 790 与 1.0。

您不必手动执行此操作,Python sklearn 模块有一个名为 StandardScaler() 的方法,该方法返回带有转换数据集方法的 Scaler 对象。

实例

缩放 Weight 和 Volume 列中的所有值:

import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()

df = pandas.read_csv("cars2.csv")

X = df[['Weight', 'Volume']]

scaledX = scale.fit_transform(X)

print(scaledX)

结果:

请注意,前两个值是 -2.1 和 -1.59,与我们的计算相对应:

[[-2.10389253 -1.59336644]
 [-0.55407235 -1.07190106]
 [-1.52166278 -1.59336644]
 [-1.78973979 -1.85409913]
 [-0.63784641 -0.28970299]
 [-1.52166278 -1.59336644]
 [-0.76769621 -0.55043568]
 [ 0.3046118  -0.28970299]
 [-0.7551301  -0.28970299]
 [-0.59595938 -0.0289703 ]
 [-1.30803892 -1.33263375]
 [-1.26615189 -0.81116837]
 [-0.7551301  -1.59336644]
 [-0.16871166 -0.0289703 ]
 [ 0.14125238 -0.0289703 ]
 [ 0.15800719 -0.0289703 ]
 [ 0.3046118  -0.0289703 ]
 [-0.05142797  1.53542584]
 [-0.72580918 -0.0289703 ]
 [ 0.14962979  1.01396046]
 [ 1.2219378  -0.0289703 ]
 [ 0.5685001   1.01396046]
 [ 0.3046118   1.27469315]
 [ 0.51404696 -0.0289703 ]
 [ 0.51404696  1.01396046]
 [ 0.72348212 -0.28970299]
 [ 0.8281997   1.01396046]
 [ 1.81254495  1.01396046]
 [ 0.96642691 -0.0289703 ]
 [ 1.72877089  1.01396046]
 [ 1.30990057  1.27469315]
 [ 1.90050772  1.01396046]
 [-0.23991961 -0.0289703 ]
 [ 0.40932938 -0.0289703 ]
 [ 0.47215993 -0.0289703 ]
 [ 0.4302729   2.31762392]]

预测 CO2 值

多元回归 一章的任务是在仅知道汽车的重量和排量的情况下预测其排放的二氧化碳。

缩放数据集后,在预测值时必须使用缩放比例:

实例

预测一辆重 2300 公斤的 1.3 升汽车的二氧化碳排放量:

import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()

df = pandas.read_csv("cars2.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

scaledX = scale.fit_transform(X)

regr = linear_model.LinearRegression()
regr.fit(scaledX, y)

scaled = scale.transform([[2300, 1.3]])

predictedCO2 = regr.predict([scaled[0]])
print(predictedCO2)

结果:

[107.2087328]

您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



31 次浏览
1次