求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 
 
机器学习教程
1. 入门
2. 平均中位数模式
3. 标准差
4. 百分位数
5. 数据分布
6. 正态数据分布
7. 散点图
8. 线性回归
9. 多项式回归
10. 多元回归
11. 缩放
12. 训练/测试
13. 决策树
 

 
目录
机器学习 - 标准差
6 次浏览
 

什么是标准差?

标准差(Standard Deviation,又常称均方差)是一个数字,描述值的离散程度。

低标准偏差表示大多数数字接近均值(平均值)。

高标准偏差表示这些值分布在更宽的范围内。

例如:这次我们已经登记了 7 辆车的速度:

speed = [86,87,88,86,87,85,86]

标准差是:

0.9

意味着大多数值在平均值的 0.9 范围内,即 86.4。

让我们对范围更广的数字集合进行处理:

speed = [32,111,138,28,59,77,97]

标准差是:

37.85

这意味着大多数值都在平均值(平均值为 77.4)的 37.85 范围内。

如您所见,较高的标准偏差表示这些值分布在较宽的范围内。

NumPy 模块有一种计算标准差的方法:

实例

请使用 NumPy std() 方法查找标准差:

import numpy

speed = [86,87,88,86,87,85,86]

x = numpy.std(speed)

print(x)

实例

import numpy

speed = [32,111,138,28,59,77,97]

x = numpy.std(speed)

print(x)

方差

方差是另一种数字,指示值的分散程度。

实际上,如果采用方差的平方根,则会得到标准差!

或反之,如果将标准偏差乘以自身,则会得到方差!

如需计算方差,您必须执行以下操作:

1. 求均值:

(32+111+138+28+59+77+97) / 7 = 77.4

2. 对于每个值:找到与平均值的差:

 32 - 77.4 = -45.4
111 - 77.4 =  33.6
138 - 77.4 =  60.6
 28 - 77.4 = -49.4
 59 - 77.4 = -18.4
 77 - 77.4 = - 0.4
 97 - 77.4 =  19.6

3. 对于每个差异:找到平方值:

(-45.4)2 = 2061.16 
 (33.6)2 = 1128.96 
 (60.6)2 = 3672.36 
(-49.4)2 = 2440.36 
(-18.4)2 =  338.56 
(- 0.4)2 =    0.16 
 (19.6)2 =  384.16

4. 方差是这些平方差的平均值:

(2061.16+1128.96+3672.36+2440.36+338.56+0.16+384.16) / 7 = 1432.2

幸运的是,NumPy 有一种计算方差的方法:

实例

使用 NumPy var() 方法确定方差:

import numpy

speed = [32,111,138,28,59,77,97]

x = numpy.var(speed)

print(x)

标准差

如我们所知,计算标准差的公式是方差的平方根:

1432.25 = 37.85

或者,如上例所示,使用 NumPy 计算标准差:

实例

请使用 NumPy std() 方法查找标准差:

import numpy

speed = [32,111,138,28,59,77,97]

x = numpy.std(speed)

print(x)

符号

标准差通常用 Sigma 符号表示: σ

方差通常由 Sigma Square 符号 σ 2 表示

章节总结

标准差和方差是机器学习中经常使用的术语,因此了解如何获取它们以及它们背后的概念非常重要。


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



6 次浏览