求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 
 
机器学习教程
1. 入门
2. 平均中位数模式
3. 标准差
4. 百分位数
5. 数据分布
6. 正态数据分布
7. 散点图
8. 线性回归
9. 多项式回归
10. 多元回归
11. 缩放
12. 训练/测试
13. 决策树
 

 
目录
机器学习 - 正态数据分布
6 次浏览
 

正态数据分布(Normal Data Distribution)

在上一章中,我们学习了如何创建给定大小且在两个给定值之间的完全随机数组。

在本章中,我们将学习如何创建一个将值集中在给定值周围的数组。

在概率论中,在数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss)提出了这种数据分布的公式之后,这种数据分布被称为正态数据分布或高斯数据分布。

实例

典型的正态数据分布:

import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)
plt.show()

结果:

 


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



6 次浏览