求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 
 
Matplotlib教程
1.数据可视化是什么
2.Matplotlib是什么
3.Matplotlib下载和安装
4.Matplotlib.pyplot接口汇总
5.第一个Matplotlib绘图程序
6.PyLab绘制曲线图
7.Matplotlib figure图形对象
8.Matplotlib axes类使用详解
9.Matplotlib subplot()函数用法详解
10.Matplotlib subplots()函数详解
11.Matplotlib subplot2grid()函数详解
12.Matplotlib设置网格格式
13.Matplotlib设置坐标轴格式
14.Matplotlib设置坐标轴范围
15.Matplotlib设置刻度和标签
16.Matplotlib中文乱码解决方案
17.Matplotlib双轴图
18.Matplotlib设置刻度和标签
 

 
目录
 
数据可视化是什么
来源:C语言中文网
21 次浏览
1次  

如果将文本数据与图表数据相比较,人类的思维模式更适合于理解后者,原因在于图表数据更加直观且形象化,它对于人类视觉的冲击更强,这种使用图表来表示数据的方法被叫做数据可视化。

matplotlib数据可视化

图1:数据可视化

当使用图表来表示数据时,我们可以更有效地分析数据,并根据分析做出相应的决策。在学习 Matplotlib 之前,了解什么是数据可视化是非常有必要的。

数据可视化

图表为更好地探索、分析数据提供了一种直观的方法,它对最终分析结果的展示具有重要的作用。

数据可视化是一个新兴名词,它表示用图表的形式对数据进行展示。当您对一个数据集进行分析时,如果使用数据可视化的方式,那么您会很容易地确定数据集的分类模式、缺失数据、离群值等等。下图展示了五个常用的数据可视化图表:

matplotlib数据可视化

图2:数据可视化常用图表

对于组织决策者而言,数据可视化也只是一种辅助工具,从寻找数据间关联到最终做出决定,大致分为以下四步。如下图所示:

matplotlib数据可视化

图3:组织者决策流程图

下面对图 3 中的流程进行简要说明:

  • 可视化(Visualize):使用不同种类的图表对原始数据进行可视化处理,使复杂的数据更容易理解与使用;
  • 分析(Analysis):数据分析的目的是获取有用的信息,这个过程主要涉及对数据的清洗、检查、转换以及对数据的建模;
  • 文档说明(Document insight):文档说明属于整理、汇总阶段,将有用的数据或者信息整理出来;
  • 数据集转换(Transform Data Set):指将数据进行分类、分级、统计记录格式与编码格式等。

数据可视化应用场景

数据可视化主要有以下应用场景:

  • 企业领域:利用直观多样的图表展示数据,从而为企业决策提供支持;
  • 股票走势预测:通过对股票涨跌数据的分析,给股民提供更合理化的建议;
  • 商超产品销售:对客户群体和所购买产品进行数据分析,促使商超制定更好的销售策略;
  • 预测销量:对产品销量的影响因素进行分析,可以预测出产品的销量走势。

其实不管是在日常生活,还是工作中,我们都会根据过往的经验作出某些决定,这种做法也叫做“经验之谈”。数据分析和其类似,通过对过往数据的大量分析,从而对数据的未来走势做出预测。


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



21 次浏览
1次