求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 
 
机器学习教程
1. 入门
2. 平均中位数模式
3. 标准差
4. 百分位数
5. 数据分布
6. 正态数据分布
7. 散点图
8. 线性回归
9. 多项式回归
10. 多元回归
11. 缩放
12. 训练/测试
13. 决策树
 

 
目录
机器学习 - 散点图
36 次浏览
 

散点图(Scatter Plot)

散点图是数据集中的每个值都由点表示的图。

Matplotlib 模块有一种绘制散点图的方法,它需要两个长度相同的数组,一个数组用于 x 轴的值,另一个数组用于 y 轴的值:

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x 数组代表每辆汽车的年龄。

y 数组表示每个汽车的速度。

实例

请使用 scatter() 方法绘制散点图:

import matplotlib.pyplot as plt

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.scatter(x, y)
plt.show()

结果:

散点图解释

x 轴表示车龄,y 轴表示速度。

从图中可以看到,两辆最快的汽车都使用了 2 年,最慢的汽车使用了 12 年。

注释: 汽车似乎越新,驾驶速度就越快,但这可能是一个巧合,毕竟我们只注册了 13 辆汽车。

随机数据分布

在机器学习中,数据集可以包含成千上万甚至数百万个值。

测试算法时,您可能没有真实的数据,您可能必须使用随机生成的值。

正如我们在上一章中学到的那样,NumPy 模块可以帮助我们!

让我们创建两个数组,它们都填充有来自正态数据分布的 1000 个随机数。

第一个数组的平均值设置为 5.0,标准差为 1.0。

第二个数组的平均值设置为 10.0,标准差为 2.0:

实例

有 1000 个点的散点图:

import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 1000)
y = numpy.random.normal(10.0, 2.0, 1000)

plt.scatter(x, y)
plt.show()

结果:

 

散点图解释

我们可以看到,点集中在 x 轴上的值 5 和 y 轴上的 10 周围。

我们还可以看到,在 y 轴上扩散得比在 x 轴上更大。


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



36 次浏览