求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
要资料
 
追随技术信仰

随时听讲座
每天看新闻
 
 
NumPy 教程
1.NumPy是什么
2.NumPy下载与安装
3.NumPy ndarray对象
4.NumPy 简介
5.NumPy 入门
6.NumPy 数组索引
7.NumPy 数组裁切
8.NumPy 数据类型
9.NumPy 副本/视图
10.NumPy 数组形状
11.NumPy 数组重塑
12.NumPy 数组迭代
13.NumPy 数组连接
14.NumPy 数组拆分
15.NumPy 数组搜索
16.NumPy 数组排序
17.NumPy 数组过滤
18.NumPy 中的随机数
19.NumPy ufuncs
 

 
目录
NumPy 数组形状
82 次浏览
2次  

数组的形状

数组的形状是每个维中元素的数量。

获取数组的形状

NumPy 数组有一个名为 shape 的属性,该属性返回一个元组,每个索引具有相应元素的数量。

实例

打印 2-D 数组的形状:

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

print(arr.shape)

上面的例子返回 (2, 4) ,这意味着该数组有 2 个维,每个维有 4 个元素。

实例

利用 ndmin 使用值 1,2,3,4 的向量创建有 5 个维度的数组,并验证最后一个维度的值为 4:

import numpy as np

arr = np.array([1, 2, 3, 4], ndmin=5)

print(arr)
print('shape of array :', arr.shape)

元组的形状代表什么?

每个索引处的整数表明相应维度拥有的元素数量。

上例中的索引 4,我们的值为 4,因此可以说第 5 个 ( 4 + 1 th) 维度有 4 个元素。


您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码: 验证码,看不清楚?请点击刷新验证码 必填



82 次浏览
2次